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ABSTRACT 

We prove that the two algorithms given in the literature for 
partial least squares regression are equivalent, and use this 
equivalence to give an explicit formula for the resulting 
prediction equation. This in turn is used to investigate the 
regression method from several points of view. Its relation to 
principal component regression is clearified, and some heuristic 
arguments are given to explain why partial least squares 
regression often needs fewer factors to give its optimal 
prediction. 

Copyright O 1988 by Marcel Dekker, Inc. 
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1. INTRODUCTION 

HELLAND 

Useful statistical methods may often have their first 
development outside the statistical community; factor analysis 
and other multivariate techniques probably being the most 
important examples. In the present paper we will examine one 
particular method of analysis that has been developed in recent 
years mainly by chemometricians, namely the socalled partial 
least squares regression, or PLS-regression for short. 

In spectroscopy one aim is to predict chemical 
composition from, e.g., near infrared reflextance spectra of 
meat or of cereal. If the signals for each particular wavelength 
are considered as explanatory variables, traditional regression 
methods soon run into collinearity problems, since the number 
of wavelengths can be up to several hundred, often exceeding 
the number of chemical samples (objects). Many commercial 
calibration instruments have used selection-of-variables- 
techniques to limit the number of wavelengths, but this 

probably represents a loss of information in many cases. Also, 
it is difficult to assess the accuracy of the prediction when 
variables have been selected from the model using the same 
data that are being used as basis for the prediction. From a 
statistician's point of view, the most satisfying solution is 
probably to use calibration methods based on models ("Beer's 
law") of the effect on the spectra caused by the chemical 
composition in the sample. See, e.g., N z s  (1985), where 
assuming a factor structure for the error was essential for 
making the model to work. Other calibration methods for such 
situations have been proposed by Sundberg and Brown (1985); 
multivariate calibration in general is reviewed by Brown 
(1982). 

However, regression of chemical variables on spectral 
variables is still being used and will probably continue to be 
used to a large extent, even though it to many can seem like a 
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THE STRUCTURE OF PARTIAL LEAST SQUARES REGRESSION 

confusion of cause and effect. One rational behind such 
methods goes back to Krutchkoff (1967), who showed by 
simulation that a large gain in mean square error (MSE) can 
result from performing the regression in the direction of 
prediction, even though the statistical model works with a 
causeleffect connection in the other direction. The debate 
following Krutchkoffs paper is still going on, but many authors 
have come down by supporting his conclusion for the case 
where one only wants to predict over a limited range of the 
variables. One recent paper extending this conclusion (for a 
large statistical sample) to the multivariate case, is Sundberg 
(1985). 

For finite or moderate samples there remains the 
collinearity problem. The two most used statistical techniques 
for overcoming this problem are principal component 
regression (PCR) and ridge regression (RR). The later method 
has been critized in this connection by Fearn (1983), but his 
critique has been countered by Hoerl et al. (1985) and N z s  et 
al. (1986). Both methods require large amount of computation 
when the number of variables is large. In ridge regression 
there is the problem of estimating the ridge parameter (see 
Smith and Campbell (1980) and the discussion there), and in 
PCR there is the problem of choosing which principal 
components to delete (see Joliffe (1982), Mason and Gunst 
(1985) and references in these papers). 

By some of its proponents, PLS-regression is claimed to 
overcome most, if not all of these difficulties, and, to some 
extent they may seem to be right in this. PLS tackles the 
model-problem by modelling both chemical and spectral data 
as functions of common latent variables (although the concept 
of model is rather imprecise; a new term, "soft modelling", has 
been put forward to motivate this lack of precision). PLS 
overcomes the collinearity-problem in a similar way as PCR, 
and simulations even tend to show that PLS reaches its minimal 
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5 84 HELLAND 

MSE with a smaller number of factors than PCR. We will give 
some theoretical arguments to support this later. Finally, PLS 
gives a unique way of choosing the factors, contrary to PCR, and 
it requires less computation than both PCR and RR. 

The PLS-algorithm has its origin in Herman Wolds 
general systems-analysis models (see Wold and Joreskog,l982). 
As a calibration method to predict chemical variables from 
spectral data, it has been developed mainly by Svante Wold 
and Harald Martens (see Wold et al. (1983), Martens and 
Jensen (1983), Martens (1985), N a s  and Martens (1985) and 
references in these papers). For chemists, a review of the 
method has been given by Geladi and Kowalski (1986). Outside 
spectroscopy, the algorithm has been used for instance in the 
interpretation of ANOVA interactions (Aastveit and Martens, 
1986), in sensory testing (Martens et al., 1983a) and in the 
interpretation of computer tomograph pictures (Martens et al. 
1983b). A recent review of PLS as a multivariate calibration 
method is given by Martens (1987). 

In the literature, the PLS-method is usually presented 
as an algorithm. In fact, two seemingly completely different 
algorithms are being presented. The first one, being the 
algorithm usually implemented in applications, is shown by 
Wold et al. (1984) to be related to the conjugate gradient 
method for inverting matrices. This relation has been further 
exploited by Manne (1987). The second algorithm has been 
treated from a statistical point of view by N z s  and Martens 
(1985), where many of the ideas discussed in the present paper 
were first introduced. A formal proof of the equivalence 
between the two algorithms is given in Theorem 2.1 below. 

It is first in the last few years that theoretical papers 
connected to the PLS algorithms have appeared. In addition to 
those mentioned above, we should also mention Lorber et al. 
(1987) and Hoskuldsson (1987). There are still many 
unresolved questions in this area. What matematical 
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THE STRUCTURE OF PARTIAL LEAST SQUARES REGRESSION 585 

statisticians can contribute with, is first to try to set a standard 
of rigor. When new methods are being developed, it is often 
fruitful to rely on intuition and heuristic arguments. However, 
after some time one can usually gain much by trying to replace 
heuristics and empirical evidence by rigorously proved 
mathemathical results. 

Secondly, mathematical statisticians can contribute by 
introducing proper probabilistic models. It is difficult to 
evaluate calibration methods by just looking at empirical 
results. Either by simulation or by algebraic results it should 
be possible to study the performance of different methods 
under different model assumptions. Here much remains to be 

done. 
The purpose of the present paper is first of all to look at 

some algebraic structures related to the two PLS-algothitms, 
and to exploit the connection to principal component regression. 
The relationship between PLS and statistical models with latent 
variables will be studied elsewhere. 

2. THE ALGORITHMS 

2.1 Motivation 

We will limit ourselves to the PLS1-case where the 
relationship between a set of variables and one single variable 
is studied. More general cases are treated in some of the 
references given above. 

Let the basic data be given by 

X = (xl, ..., xK) and y, 

where each of the vectors x,, ..., xK and y are N-dimensional, 
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586 HELLAND 

corresponding to observations on N units (i.e. chemical 
samples.) In the spectroscopy-situation, the y will represent 
some chemical variable and the xk's will be measurements at 

different wavelengths, but we will have in mind any 
regression-type situation where the number K of variables is 
fairly large. 

Until further notice we will suppose that the means 
- - -  
xl  ,... xK, y have been subtracted from the variables x l  ,..., x K ,  y .  
Like PCR and RR, the analysis that we will describe is not scale- 
invariant, so the xk-variables will usually be scaled in some 

way before the analysis (see Marquardt (1980) for the 
corresponding argument in the RR-case). Often each variable is 
scaled to unit variance, but note that such a scaling implies 
difficulties with the population interpretation of the covariance 
matrix. 

Data matrices such as X can often be described in a 
meaningful way in a bilinear (factor-) form 

where the scores ta are N-vectors ("latent variables"), the 

loadings pa are K-vectors and the residual matrix EA is "small" 

in some sense. For a review of bilinear models, see Kruskal 
(1978). For an interesting argument why most reasonable 
matrices can be decomposed in bilinear form with few terms, 
see Wold (1974). An alternative argument can be based upon 
the singular value decomposition of X .  

The basis for the PLS-method is that the relation 
between X and y is conveyed through the latent variables. 
That means that one also has a decomposition 

for scalars qa and with the same scores. 
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The question now is how to calculate the scores and the 

loadings. (I will not use the word estimate here, for I have not 

yet introduced any statistical models and hence no 

parameters.) Both because of the well-known indeterminancy 

caused by T P  = (TC)(C- 'P) ,  and because we have not said 

anything yet about the residuals, there are many ways of doing 

this. To get a higher degree of uniqueness, one can impose 

various conditions upon the tats and pats.  One common set of 

conditions is to force the scores to be mutually orthogonal in xN 
or the loadings to be mutually orthogonal in K ~ .  If both these 

requirements are imposed (and one also assumes orthogonality 

to rows/ columns of EA), it is easy to see from (2.1) that each 

t, must be an eigenvector to XX ' ,  and that each p a  must be an 

eigenvector to X'X.  Hence all the vectors are essentially 
determined from the X -data. 

If one then wants to use both (2.1) and (2.2) to get a 

good fit, one is thus forced to relax upon the orthogonality 

requirements. This can be seen as the reason why one is lead 

to two different, but equivalent algorithms. In the first one, 

the scores are orthogonal in leN, in the second one, the loadings 

are orthogonal in K ~ .  The first algorithm turns out to be the 

easiest computationally, and the scores and loadings from this 

algorithm are probably the simplest to find practical 

interpretations for. So from a practical point of view, this 

algorithm is all one need to be familiar with. To find a 

mathematical interpretation of the resulting prediction 

equation, however, and to investigate its relationship to 

principal component regression, it turns out to be far easier to 

use the second algorithm. Hence both will be introduced below, 

and they will be shown to be equivalent in the sense that they 

give the same prediction equation. 
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5 88 HELLAND 

2.2 The original PLS-algorithm 

The aim is to find representations of the form (2.1) and 

(2.2) for each A up to a maximal number. Hence, writing Eo = X 

and fo = y ,  one must have 

To fit into these equatons, t,, pa and qa are determined by 

induction. 
The basic point now is that each ta is determined as a 

linear combination of the x-residuals from the previous step. In 
particular, for a= l  one wants 

where w is a K-dimensional weight-vector. It is desired that t l  
should be highly correlated with y ,  and a reasonable choice is 
to make each component wkl proportional to the covariance 
between xk  and y .  We will take 

W k l  = xkly , i.e.: w , = X'y . (2.5) 

Different normalizations are used here in different 
papers on this subject. As long as the products tapa' and taqa 
are conserved, it is easy to see that this normalization is of no 
consequences; we will use the one that gives the simplest 
formulas in most cases. Some of the formulas below would 
have been slightly simpler if we had used the normalization 

w l ' w l  = 1 etc., but this would lead to unnecessary 
computations, and we would not so easily see the point that the 
algorithm in principle can stop automatically after a certain 
number of factors. 
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THE S T R U C T U R E  O F  P A R T I A L  L E A S T  S Q U A R E S  R E G R E S S I O N  

For general a we now take 

and p a  and q, are then determined such that one gets a best 
possible fit in (2.3). That is, for a=l ,  the best fit to y = t , q ,  + f ,  
is given by the regression coefficient q l  = y't l l t l ' t  l ,  and 
similarly xk = t l p k l  + ekl gives pk l  = xk ' t l / t l ' t l  (k=1, ..., K) or 

p ,  = X' t l / t l f t 1  . For general a, then 

The new residuals E, and fa are found from (2.3). 
The number of factors to retain in the final equation is 

usually determined by a crossvalidation procedure: The data 
set is divided into G parts, calibration is done in turn with one 
part removed and validated on this last part. The number of 
factors is chosen so that the estimated error of prediction is 
minimized. Crossvalidation in general is discussed by Stone 
(1974), in a principal component context by Wold (1978). 
Crossvalidation in PLS is described by several authors, e.g., 
Wold et al. (1984). An alternative criterion - leverage corrected 
mean square error - which requires less calculation than 
crossvalidation, is proposed by Martens and N z s  (1987). 

The one-dimensional regression-coefficients found at 
each step (2.8)-(2.9) have given origin to the term "partial least 
square". In some papers, (2.6) and (2.7) are also motivated as 
least squares fits, but this does not make much sense. The 
choice of the weight-factors (2.5) and (2.7) is probably the 
point that is most poorly motivated, but we will show later that 

it does lead to fairly reasonable results. Also, of course, it 
gives simple computations. By modifying these weights in 
various ways, one can introduce a rich class of calibration 
methods, which deserve closer study. In this paper we will 
stick to the choice (2.7). 
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590 HELLAND 

If now xo = (xO1, xO2, ..., xOk)' is a set of x-measurement  
on a new unit, one defines eo = xo-7i with F = (TI,...,&)' and 
then new scores and residuals consecutively by 

Then the corresponding yo-value is predicted in step A by 

Simulation on real and artificial data have shown that 
this predictor performs similarly to the PCR-predictor (see N a s  
et a1 (1986) and references there); and it even tends to get its 
smallest estimated prediction error after fewer terms than PCR. 
This, together with the computational simplicity, represents the 
attractive feature of the procedure. Its main unattractive 
characteristic is its complete lack up to now of known 
distributional properties under any reasonable model. 

2.3 An alternative algorithm and the eauivalence between the 
two  - 

This second algorithm for PLS was introduced by H. 
Martens (see Martens, 1985), and is presented in several of his 
papers. In particular it is the basis for the theoretical 
discussion in N a s  and Martens (1985). It differs from the first 
algorithm in that one has to use multiple regression to find the 
loadings, and that new q-loadings are defined in each step. 

Again we use the normalization that gives the simplest 
formulas. As a start, put Eo* = X, fo* = y, and then determine - * pa*, ta*, Ta*, q a *  = (qal ,...,qaa*)', Ea* and fa* consecutively by 
the formulas 
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THE STRUCTURE OF PARTIAL LEAST SQUARES REGRESSION 591 

The orthogonality-properties mentioned earlier are 
easily seen to follow from the way the vectors are determined 
as projections of earlier residuals: For the first algorithm, 
different ta  are orthogonal because of (2.8) and the first part of 

(2.3). In the second, different pa* are orthogonal because of 
(2.13) and (2.16). 

Let again xo = (xO1, ..., xOK)' be a new set of x-values, and 
- 

put eo* = xo - x.  Then, as in (2.10), new scores and residuals 

for this point are determined in the same way as for the other 
points. Thus, as in (2.13) and (2.16), for a=1,2 ,... we let 

and predict yo in step A by 

The formulas given here can be simplified in various 

ways; later we will give a very simple formula for the 
prediction (2.20). But first we will show that the two 

* 
algorithms are equivalent. In fact the loadings pa are equal to 

the weights wa from the first algorithm. 
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592 HELLAND 

%orem 2.1 

With notation as dove we fiave for a=1,2, ... 

a )  p a * = w a ,  

Proof 
Let Pta* and P t a  be the projections upon the two spaces 

described in b), and let I be the identity matrix of size N by N. 
Then using the orthogonality of t l ,  t2, ..., we find from (2.3), 
(2.8) and (2.9) 

and (2.15) - (2.17) give 

We prove a) and b) simultaneously by induction in the 

parameter a. They are trivial for a=l.  Assume them to be true 

up to a-1. Then the formulas above show that 
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THE STRUCTURE OF PARTIAL LEAST SQUARES REGRESSION 

giving a). But the two sets of scores are given by 

Since, by the induction hypotheses, the vector subtracted from 
Xw, in t, belongs to the span of tl*,...,ta-l*, this proves b). 

By the formulas above for fa and fa*, c) follows from b). 

Taking the two sets of scores as columns in matrices, it 
follows from b) that Ta*  = T a D  for some non-singular matrix D .  
(An explicit formula for D will be given in Section 3.3 below.) 
From the way the scores tro* and trO are constructed, one must 

then also have [tlo* ,..., taO*] = [t10 ,..., taO] D.  Thus we have a simple 

linear change of variable between the two sets of scores, and 
since prediction in both cases is based upon multiple linear 
regression on the scores, d) follows. 

Essentially the same proof works for the corresponding 

algorithms in the case (PLS2) with several y-variables; this is 

shown in an unpublished note by Chris Rogers. 

3. THE VARIABLES GIVEN BY THE ALGORITHMS 

3.1. The weight factors 

A recurrence relation for the weights w a  is most easily 

found using pa*  = w, in the second algorithm. In the proof of 
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594 HELLAND 

Theorem 2.1, we showed that t,* is proportional to Xw,, or 

properly normed (cf. (2.13)): t,* = Xw,/w,'w, . Thus 

T,* = (t,* ,..., t,*) = X Waca ,  where we define W, = (wl , . .  .,w,), and 

let C, be the normalizing matrix diog(ll w 112, ..., Ilw ,1r2) . 
Then (2.15) gives 

, 

q,* = ~ , - ~ ( w , ' s w , ) - ~ w , ~ s  , (3.1) 

where the following fundamental matrices are introduced 

Now from (2.12) for w , + ~  = pa+l* and the relations in 

the proof of Theorem 2.1 we have 

Using again T,* = XW,C, in Pta* = T,*(T,*'T,*)~~T,*', we get 

This recurrence relation will be the basis for much of the 
following, and it will be written in the form 

where now I has dimension K by K, and 

Note that any matrix of the form W a c  with C 
nonsingular can replace W, in the definition of Ha. The 

important thing is that the columns form a basis for the space 
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5, spanned by w l ,  w2, ..., W, . A particular basis is of special 

interest. 

As lbng mwA is nonzero, an alternative basis forSA isgiven 6y the 

vectors 
A-  1 

s , S s  ,..., S s .  

Proof 
We have wl = s. Use induction in a together with (3.3) 

to show that each w, can be written as a linear combination of 

s,  Ss ,  ..., sa - l s .  (Note that the last term in (3.3) is a linear 
combination of the columns of S W,.). But since wl, ..., wA form a 

basis for SAY and all thus are linear function of A new vectors, 

the latter must be linearly independent, and the Proposition 
follows. 

The alternative basis described in Proposition 3.1 is 
central to the connection between PLS and the conjugate 
gradient method from numerical analysis (see also Wold et al., 
1984 and Manne, 1987; this relationship has also recently been 
commented upon by Schweder, 1987). In the numerical 

a-1  
litterature; S, Ss ,..., S s ,... is called a Krylov sequence. The 
dimension of the space spanned by this sequence will be the 
maximal number of factors that the PLS-algorithm can give. 

This maximal space is also spanned by the relevant factors of S 
= X'X,  i.e., the eigenvectors of S with non-zero components 

along s = X'y, one for each eigenvalue in case these should be 
degenerate. These results and the corresponding population 
model will be further discussed elsewhere. 
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3.2 Prediction equation 

From (2.20) and Theorem 2 . ld  we get 

A 

Y A O  = + (tlO*'.",tAO*) GA* 

Similarly to the relation T,* = XW,Ca, we find 

(tlO* ,...,tAO*) = (x0 - ;;;)'Waca 

HELLAND 

Using (3.1), we then get one of our main results: 

For 60th TU-dgarithm, the prediction at step A isgiven 6y 

s = X'y and H A  i s ~ i v e n  6y (3.5) with S = X ' X  . 

Note again, that from Proposition 3.1, we can replace W A  in the 

definition of H A  by 

V A  = (s, Ss ,  ..., SA-1s) (3.8) 

S 0 

scalars 
Also note that one can multiply S and s by arbitrary 
and still get the same space spanned by the columns of 
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THE STRUCTURE OF PARTIAL LEAST SQUARES REGRESSION 5 9 7  

V A .  Hence if we use the same scalar multiplying both S and s ,  

we get the same regression vector b A  = HAS from (3.8) and 

(3.9). Up to now we have taken S = X'X and s = X'y. However, 
if one wants to treat the prediction in the framework of a 
population model, it is more meaningful to use covariance- 
matrices and -vectors, therefore, dividing both S and s by N or 
N-1. 

The formulae (3.6) - (3.7) with HA given by (3.5) are 

true even if arbitrary orthogonal weight vectors w l ,  ..., w A  

should be chosen in the PLS-algorithm (2.3) - (2.11). This can 
be seen by inspecting the above proof (taking pa* = w a  as a 

definition in Theorem 2.1). However, the alternative formula 
(3.9) for HA is crucially dependent upon the special weights 

chosen in the PLS-algorithm. 
When the number N of units is about 3 times the 

number of variables or greater, our explicit formulae can be 
shown to give faster computation than the original algorithms. 
Much more important, however, is that the formulae make it 
possible to give explicit interpretations of the prediction 
resulting from the algorithms. 

3.3 An alternative formula for bAz - 

Consider first the matrix D in the relationship T A *  = T A D  
mentioned in section 2.3 above. Let D = (d . . ) .  Then, since the 

1J 

vectors t i  are orthogonal, we get 

d. .  = ('.It.)-lt.'t.* = (t . ' t .)-lt . 'X w ./w . 'w .  = p i lw j /w j 'w j  , 
IJ 1 1  I J  1 1  1 J J J  

so D = P A t W  A C A  in the notation defined before (3.1). This gives 

and hence T A  = x W A ( P A 1 W  A)-1. Similarly for new observations 
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xO , we get 

and from (2.11) we have 

This formula was suggested by Martens and N z s  (1987) 
(the first version was from 1981), and it can be proved in 
several ways. The above proof was suggested by Chris Rogers. 

Several authors have pointed out that the matrix P A 1 W A  
is triangular with all diagonal-elements equal to 1. Manne 
(1987) proves that the matrix also is bidiagonal, and gives the 
resulting simple inversion formula. 

Note that even though (3.10) looks slightly simpler than 
(3.7)-(3.9), the latter formulas are expressed directly in terms 
of covariances of the observed variables and hence allows 
simpler interpretations. 

4. INTERPRETATION OF THE PREDICTION EOUATION 

4.1 Intermetation via a transformation 

Under the usual regression model y - N(XR, 021), the 

distribution of s = X'y will be N(Sl3, 02S), where again S = X'X. 

Assuming S is invertible, let 6 be the positive definite, 

symmetric square root of it, and define u = (&)-IS. Then u 

will be K-dimensional, 

u - N(y, o2 I), y = . (4.1) 
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If we transform the estimated regression coefficient vector b A  

similarly into gA = fibA, Theorem 3.1 together with (3.9) 

gives 

Trovosition 4.1 

?Xe P a  regression vector at step A i s ~ i v e n  6y 

where GA = & H ~ &  is the projection upon the space spanned 6y the 

vectors {Su, S2u ,..., SAu).  

Note that this Proposition is true irrespectibly of which 
distributional assumptions we make on the variables. If the 
distribution is given by (4.1), then of course the natural 

n 

estimator of y is y = u.  What PLS does , is instead to project u 
upon an A-dimensional space which again depends upon u .  
This may seem strange, but perhaps it is easier to accept such 
non-linear estimators for those knowing the James-Stein 
regression estimator and similar shrinkage estimators (see 
Copas (1983) for a discussion.) In the present context, a partial 
motivation can be made as follows: The data are not only given 
by u, but also by S, which gives the covariance structure of the 
original x-variables. If these variables are highly collinear, 
then transforming back to fi = (&)-'u gives an unstable 
estimator. This is the usual collinearity-problem of the 
multiple regression estimator. No such problem arises, 
however, if y is estimated by gA in (4.2) with small or 

moderate A, since the estimator then is a linear combination of 
Su,  S2u, ..., SAu, cancelling the factor (&)-I. 

Looking at the first PLS-algorithm, we see that it stops 
in a natural way at the step A = M, where M is the first integer 
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where w ~ + ~  = EA1fA = 0.  For A s M the matrix W A'S WA will 

have full rank and has a spectral decomposition 

where V I A ,  ..., V A A  are orthonormal eigenvectors with 

eigenvalues qlA, ..., qAA, all nonzero. Using this and (3.5) in 

(3.7), we find 

this being equivalent to formula (3.3) in Nas  and Martens 
(1985). 

The formula (4.4) suggests a close analogy with the 
predictor given by principal component regression. This has 
the same form as the PLS-predictor (3.12), but with b A  
replaced by 

where  

is the spectral decomposition of S = X'X and z l ,  ..., zA are the 

selected principal components (usually with large or moderate 
eigenvalues .) 

This analogy becomes an identity if we let A take its 

maximal value M in (4.4). One can show that M is the number 
of different eigenvalues hk such that zkts + 0 for at least one zk 
corresponding to this eigenvalue. 
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I f A  = M, the Pa-predictor 13 f M  = + (xo - $'bM 
with 

for a suita6Ce cbice of and ordering 4 tht eigenvectors 
z1,z2, - . a ,  Z K  ' 

The proof of this Theorem will be given elsewhere. 

The interpretation of (4.6) is that PLS with A=M gives 
the principal component solution with all nonzero eigenvalues, 
and, that is important: it is found with the minimal number of 
terms. All terms with za's = 0 are automatically neglected, and 
for multiple eigenvalues, the algorithm picks just the right 
eigenvectors. 

Perhaps more important than the precise statement of 
Theorem 4.1, is what it seems to imply when the conditions are 
approximately fulfilled. Remember that both the hk and the zk 
depend on the data through S = X'X,  so all the variables in 
(4.6) must be thought of as having some random noise attached 
to it. Imagine that the complete spectral decomposition of S 
has several terms with hk and/or zk's "nearly" zero. Then, 

since the considerations of the previous section seem to imply 
certain continuity properties of bA,  the formula (4.6) suggests 

that bA will be "nearly" equal to the PCR-predictor after some 

terms. Furthermore, if some sets of eigenvalues are "nearly" 
coinciding, it seems likely that the PLS-predictor will stabilize 
after fewer terms than the PCR-predictor does. This discussion 
can be made more precise, but the matter will not be pursued 
further here. At least, the results are consistent with the 
simulations showing that PLS tends to achieve its minimal MSE 
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after fewer terms than PCR. However, the discussion also 
indicates that PLS and PCR, each with an optimal number of 
factors, not only should give similar results in terms of MSE, 
but they should also give similar predictions. This also seems 
to be the case on practice. 

Note that the reduction in PLS in the number of terms 
because of multiple eigenvalues can be considerable. An 
extreme case is when S is proportional to the identity matrix. 
Then PLS gives the least squares predictor in the first term, 
while a principal component representation of the forms (4.5) 
will need A = K in most cases. Thus reduction in the number of 
terms in PLS has little to do with collinearity, it is primarily 
connected to the equality or near equality of the eigenvalues of 
S. 

5. DISCUSSION 

Simulations have indicated that PLS often reaches its 
minimal mean square error after fewer factors than PCR does. 
Formulas for the mean square error of prediction of PLS can be 
studied to a certain extent, especially if one integrates over 
future observations under different weight functions as in 
Gunst and Mason (1979). Such calculations seem to confirm 
that the mean square error of PLS usually is lower than that of 
PCR after the first few factors. The more interesting problem, 
but one that probably is impossible to solve analytically, would 
be to try to compare the minimal mean square errors for the 
two methods. Simulations may also be difficult here, since the 
difference seems to be very small. 

If more was known about the prediction error of PLS, 
this quantity could perhaps be estimated in concrete cases, thus 
making approximate confidence statements available. 

Another open problem in connection with the PLS- 
algorithm is to find a test for the number of factors to include 
in the algorithm. Today the number of factors is usually 
determined by crossvalidation. 

As a general attitude towards the PLS-method one can 
of course question the value of introducing another biased 
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regression method as competitor to PCR and RR. What PLS 
offers in comparison with these methods, is first some gain in 
computation time, which may not be too important with the use 
of modern computers (though certainly of value when 
microcomputers are being used). Next it seems to get its 
optimal prediction with fewer factors than PCR, which, in 
addition to minimize computing, may help interpretation in 
some cases. Thirdly, unlike PCR, the PLS method gives a unique 
way of choosing which factor to include next. Finally, the PLS- 
method does not only look at the conditional distribution of y 
g iven  x, but treats both x and y as random variables, 
connected through the latent variables t. 

The main disadvantages of PLS are still its lack of 
known distributional properties, together with the fact that the 
method has been derived in a rather ad hoc way, not from any 
welldefined optimization principle. 
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